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ABSTRACT  

Transcribing voice communications in NASA’s launch control center is important for information utilization. However, 
automatic speech recognition in this environment is particularly challenging due to the lack of training data, unfamiliar 
words in acronyms, multiple different speakers and accents, and conversational characteristics of speaking. We used 
bidirectional deep recurrent neural networks to train and test speech recognition performance. We showed that data 
augmentation and custom language models can improve speech recognition accuracy. Transcribing communications from 
the launch control center will help the machine analyze information and accelerate knowledge generation.  
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1. INTRODUCTION  
NASA’s launch control center at the Kennedy Space Center has played an essential role in NASA’s human space flight 
program for nearly 50 years. All data collected from the hanger, assembly facility, and launch pad is sent to the launch 
control center. Because of the nature of sending humans to space, engineers working at the launch control center must 
make sure everything is working perfectly before launch. In addition to a complete knowledge of the system, engineers 
need the commitment and conviction of astronaut safety. Decision making by each engineer is important for a successful 
launch. Supporting technologies for engineers in this kind of high-risk situation will be useful. We believe that automatic 
speech recognition is one of the supporting technologies that can be used to accurately analyze the situation for engineers. 

 NASA also believes the importance of communication accuracy. The launch control room was renovated in 2013 
to reduce noise and improve communication accuracy. Sound-absorbing ceiling tiles, acoustic wall covering, and new 
carpet were installed 1. Automatic speech recognition is an effective way to increase communication accuracy and reduce 
the possibility of errors 2,3.  

Automatic speech recognition has three main applications, including input/output devices, communication aids, 
and information retrieval. The performance of automatic speech recognition has been greatly improved by using deep 
neural networks mainly for input / output devices 3. Industry leaders such as Amazon, Apple, Baidu, Google, Microsoft, 
and IBM are evolving to help the public easily use their products through automatic speech recognition. Conversational 
interfaces based on Amazon’s Alexa and Google’s Home have been enhanced to naturally acquire information, access 
web services, and issue commands 4. A recent study showed that deep learning based automatic speech recognition 
achieved human level performance in conversational speech recognition 5. However, the accuracy of speech recognition 
in special purpose communication in noisy environments is not optimal 6. 

The language that engineers use in the launch control center is a unique language for shuttle processing. They use 
many special terms and abbreviations that are difficult to decipher without prior knowledge of communication. In such an 
environment, speech recognition is important in terms of reducing the risk of misunderstanding, disseminating knowledge, 
and improving the launch protocol. Therefore, general-purpose speech recognition may not work. To improve the accuracy 
of automatic speech recognition in the verbal communication of professionals, we need to consider a customized language 
model that can describe the relationship between words and abbreviations in sentences 7.  

We believe that the combination of training data, deep neural networks, data augmentation, and a customized 
language model is the key to improving automatic speech recognition in the verbal communication of professionals. 



 
 

 
 

 

2. TRAINING DATA AUGMENTATION 
The recent development of deep learning-based speech recognition showed that conventional phoneme-based complex 
speech recognition is not required 8. Rather, the system can output the final transcript directly based on the graphemes 
(i.e., alphabets) 9. Previous studies used open-source data sets that typically contained thousands of hours of voice data 10. 
State-of-the-art commercial speech recognition utilized 100,000 hours of data for training 11. However, we have 
particularly small data sets because of the high cost of manual transcription (creation of ground truths) in specialized 
languages.  

We trained our bidirectional recurrent neural networks using 575 unique sentences from NASA's mission control 
center. Nine lab members then created the voice data manually by saying the same sentence. We finally created total 2,000 
speeches to analyze. Data augmentation techniques, including Gaussian noise (40 ~ 50dB), speech speed (0.9-1.1X), and 
volume modulation (-10 ~ 10dB) were applied to obtain augmented data corresponding to 10 times of original data 11,12. 
Of the augmented data, the data including Gaussian noise was 60% and the speed and volume modulation data was 20% 
each. 

 

3. BIDIRECTIONAL RECURRENT NEURAL NETWORKS 
We used bidirectional recurrent neural networks (RNN) to train and test speech recognition performance. RNN can be 
thought of as an enhanced version of the hidden markov model (HMM) 13. The HMM has a major drawback: the state is 
updated only from one state to the next so that the network cannot learn long-term dependencies 14. For context-sensitive 
language decoding, it is important to learn long-term relationships between words. The solution is a recurrent neural 
network. Long-term dependence can be learned through back propagation 15. 
 

 
Figure 1. Recurrent neural network output. The X-axis represents the time step of each output of the recurrent neural module. 
The Y axis represents 26 alphabet characters (A-Z) and 2 special characters (blank and space), and consists of a total of 28 
letters (graphemes). The intensity of the map represents the probability of the corresponding grapheme at each time step (white 
= 1, black = 0). The output is displayed at the top of the figure ("___ TTTAAANKKERBBBOOOSSTTEER ...") and further 
post processed to create the final transcript "TANKER BOOSTER". 

 
Bidirectional RNNs collect information both in the past and in the future 16. The original RNN, which obtains 

information entirely in the past, is not sufficient to accurately predict the current word, especially in situations where 
context is important. Given the sequence of words x(1), x(2), x(3), and x(4), the forward recurrent components can be 
represented by �⃗�(1), �⃗�(2), �⃗�(3), and �⃗�(4). x(1) is input to the forward recurrent component �⃗�(1). Output estimate is y(1). 



 
 

 
 

Then the backward layer of the recurrent components are �⃖�(4), �⃖�(3), �⃖�(2), and �⃖�(1). x(1) is also input to the backward 
recurrent component �⃖�(1) outputting y(1). The forward recurrent networks compute from �⃗�(1) to �⃗�(4) direction, and the 
backward recurrent networks compute from �⃖�(4) to �⃖�(1). The predicted output y(1) is the result of combined network 
components of �⃗�(1) and �⃖�(1). The entire network consists of acyclic graphs. For example, the output y (3) is based on the 
past x(1) and x(2), the current x(3), and the future x(4). We used 3 convolutional input layers, 6 recurrent layers, 1 fully 
connected layer, and 1 softmax layer 11,12.   

We used long short-term memory (LSTM) as a recurrent network component 17. Conventional RNNs still have 
significant practical problems caused by the exponential decay of gradient descent that prevents learning long-term 
relationships between words. LSTM is a special type of recurrent neural network that can learn long-term dependencies 
through selective memory consolidation 18.  

Then we used the connection temporal classification (CTC) cost for speech recognition output 19. With RNN, the 
input sequence matches one-to-one with the RNN output. Therefore, the number of outputs is large and redundant. In 
speech recognition, the number of input information is generally much larger than the number of output characters. For 
example, five seconds of a 16,000 Hz audio input is 80,000 inputs, whereas the number of output characters per 5 seconds 
is at least 1,000 times less than 80,000 characters. Therefore, the key is to reduce redundancy. The basic rule of CTC cost 
function is to erase repeated characters that are not separated by a "blank". With CTC, the recurrent neural network output 
“___TTTAAANKKERBBBOOOSSTTEER” becomes “TANKERBOSTER” (Figure 1).  

 

4. LANGUAGE MODEL 

 
Figure 2. Speech recognition process. The audio input is converted to a time-frequency map. Each time window of the map is 
then entered into bidirectional recurrent neural networks (RNNs). Output candidates of the RNNs are ranked in the 
connectionist temporal classification (CTC). Candidates of the word are further processed and finally determined using the 
semantic language model.  

 

We customized the language model to identify task-related abbreviations and technical terms (Figure 2). The language 
model uses the CTC output as input to return the probability of the last word in the given context of the previous words. 
The beam search algorithm was used to find the most accurate word candidates for speech recognition post-processing 20. 
The algorithm considers three possible choices for the current word (beam width = 3). Unlike exact search algorithms, 
such as breadth first search or depth first search, beam search runs faster, but it is not guaranteed to find the exact maximum 
for argmax

!
𝑃(𝑦|𝑥). Given the audio input x, y(t) is the output word at time t. Then the objective function is: 
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The log was introduced to handle very small values of the probability, 𝑃(𝑦(𝑡)|𝑥, 𝑦(1), … , 𝑦(𝑡 − 1)), especially when the 
decoding sentence is long. 

 

5. SPEECH RECOGNITION RESULTS IN NASA LAUNCH CONTROL CENTER DATA 
We compared the word error rate (%) between Kaldi 21, CMUSphinx 22, IBM Watson Speech to Text, Google Speech API, 
RNN, and RNN with data augmentation and custom language models. Kaldi and CMUSphinx based on the hidden Markov 
models achieved word error rates of 53% and 39%, respectively. Commercial applications IBM Watson Speech to Text 
and Google Speech API (web-based solutions) achieved 45% and 31%, respectively. RNN alone had a word error rate of 
48%. The combination of RNN and data augmentation achieved a word error rate of 26%. When combined RNN, data 
augmentation, and custom language model, the word error rate was the lowest at 18% (Figure 3). 
 

 
Figure 3. Speech recognition word error rate (%) of NASA’s launch control center data. Open-source and commercial 
solutions did not perform well because of their highly specialized abbreviations and word orders. Only customized language 
models and data augmentation could improve accuracy. 

 

6. HUMAN REVISION INTERFACE 
We built a human revision interface to continually improve accuracy. NASA's Launch Control Center speech recording 
server transmits the speech stream to the client through the Session Description Protocol (SDP), a format that describes 
the streaming media communication parameters. We simultaneously analyze speech and speaker recognition through 
client-side analysis and then save the results in comma-separated values (CSV) data format. If necessary, we can access 
and modify the CSV dataset. After one modifies the dataset, the CSV data file is updated and the data is then sent to the 
server. The CSV data file is also used to improve the language model (Figure 4). 

 



 
 

 
 

 
Figure 4. Speech / Speaker recognition with transcript revision interface. The Real-Time Streaming Protocol (RTSP) server 
records and streams speech data in real time through the Session Description Protocol (SDP). Access to the launch control 
center speech stream requires virtual private network (VPN) authentication. The client receives the SDP packet and then 
analyzes it to identify the speech and speakers. The transcribed data is then saved in the CSV (comma-separated value) file 
format, which we can manually modify to update the server's recorded data files and language model. 

 

7. DISCUSSION 
We found that bidirectional recurrent neural networks with data augmentation and custom language models achieved the 
best performance in highly specialized language environment with specialized abbreviation and grammar structures. The 
result is significant in that even perfect human hearing perception cannot fully comprehend communication at the launch 
control center without prior knowledge. A vast amount of training and knowledge of specific situations is important for 
transcription of professional voice communications. 

The speech recognition problem is to map the audio input x to the script y. The human ear converts a one-
dimensional audio input to the intensity of the frequency component. This can be thought of as a preprocessing step to 
generate a spectrogram that maps 2D information of the time and frequency of the audio input. The human brain utilizes 
a variety of contextual information to fully understand and perceive speech, including attention 23 and social cues 24,25, as 
well as sound itself. 

By using attention models in the future, we can bias the state of recurrent neural networks to improve context-
based speech recognition by paying more attention to specific words and phrases 26. The attention model must be trained 
as a separate RNN in the previous state to determine how much attention should be paid to adjacent inputs to bias the 
current state of the primary RNN. Naturally, the processing time to train the network will be at least doubled. Because of 
its inefficiency, the attention model should be carefully considered for speech recognition solutions. The attention model 
can also be used for machine translation 27 and image caption with visual attention 28. 

Automatic speech recognition, supported by computer vision, can be useful for improving speech recognition 
accuracy in noisy environments. Previous studies have shown that lip reading computer vision is far superior to traditional 
noise reduction methods 29-31. Another possibility that can improve accuracy is to use background information such as 
location information 32 and history information 33. This information has been shown to improve speech recognition 
accuracy by reducing possible word combinations in certain situations  

Transcription by automatic speech recognition system and successive voice selection and correction by human 
have been proposed 34. Adaptive and continuous improvement by humans in the loop is at the heart of an accurate speech 
recognition solution 35. Human intervention can be activated only when low-confidence automatic transcription occurs 36.  
In this study, we showed that human revision interfaces will help to continually improve speech recognition accuracy. 

Automatic speech recognition is essential in natural human-robot interaction 37. Automatic speech recognition 
can reduce the operational burden of professionals controlling robots in complex tasks, such as pilots and astronauts 38. 
Especially in human space flight situations, the ease of communication is more important because of the restricted gravity 
and limited movement environment 39. Moreover, humanoid robots with high accuracy of speech recognition through 
natural communication will help mitigate the potential psychological and psychiatric problems of astronauts in long-range 
human space exploration 40,41.  



 
 

 
 

 

8. CONCLUSION 
Data augmentation and customized language models helped improve speech recognition accuracy in challenging 
environments (e.g., limited training data size, highly specialized communication style, and word choice in the NASA 
launch control center). Using more data in the future with the human revision interface will improve the accuracy of speech 
recognition. By transcribing human verbal communication, machines will be able to analyze information and increase 
knowledge utilization. 
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